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Alpini, Gianfranco, Noriatsu Kanno, Jo Lynne Phinizy, Shannon
Glaser, Heather Francis, Silvia Taffetani, and Gene LeSage.
Tauroursodeoxycholate inhibits human cholangiocarcinoma growth
via Ca2�-, PKC-, and MAPK-dependent pathways. Am J Physiol
Gastrointest Liver Physiol 286: G973–G982, 2004. First published
December 30, 2003; 10.1152/ajpgi.00270.2003.—Tauroursodeoxy-
chate (TUDCA) is used for the treatment of cholangiopathies includ-
ing primary sclerosing cholangitis, which is considered the primary
risk factor for cholangiocarcinoma. The effect of TUDCA on cholan-
giocarcinoma growth is unknown. We evaluated the role of TUDCA
in the regulation of growth of the cholangiocarcinoma cell line
Mz-ChA-1. TUDCA inhibited the growth of Mz-ChA-1 cells in
concentration- and time-dependent manners. TUDCA inhibition of
cholangiocarcinoma growth was blocked by BAPTA-AM, an intra-
cellular Ca2� concentration ([Ca2�]i) chelator, and H7, a PKC-�
inhibitor. TUDCA increased [Ca2�]i and membrane translocation of
the Ca2�-dependent PKC-� in Mz-ChA-1 cells. TUDCA inhibited the
activity of MAPK, and this inhibitory effect of TUDCA was abro-
gated by BAPTA-AM and H7. TUDCA did not alter the activity of
Raf-1 and B-Raf and the phosphorylation of MAPK p38 and JNK/
stress-activated protein kinase. TUDCA inhibits Mz-ChA-1 growth
through a signal-transduction pathway involving MAPK p42/44 and
PKC-� but independent from Raf proteins and MAPK p38 and
JNK/stress-activated protein kinases. TUDCA may be important for
the treatment of cholangiocarcinoma.

bile acids; bile ducts; cyclic adenosine monophosphate; cancer; mi-
tosis

INTRAHEPATIC BILE DUCT epithelial cells (i.e., cholangiocytes) are
the target cells in a number of chronic liver diseases including
primary biliary cirrhosis (PBC), primary sclerosing cholangitis
(PSC), graft-vs.-host disease, and cholangiocarcinoma (2). The
growth of cholangiocarcinoma is modulated by a number of
factors, including somatostatin (61), estrogens (57), adrenergic
innervation (34), and gastrin (33). Due to our lack of under-
standing of the mechanisms of cholangiocarcinoma growth,
there are no established measures to treat this neoplasm (2).

Bile acids regulate the growth of different epithelial cells
(16, 18), including cholangiocytes (3). Bile acids have been
implicated as tumor promoters (e.g., enhancing colonic epithe-
lial cell proliferation) and are also associated with the devel-
opment of tumors (16, 18, 42). On the other hand, other studies
have shown that unconjugated hydrophobic bile acids do not
enhance cell growth but rather have cytotoxic effects against
various cell types (58), including cholangiocytes (10). The

therapeutic bile acids ursodeoxycholate (UDCA) and its tau-
rine conjugate tauroursodeoxycholate (TUDCA) have been
effectively used for the treatment of cholestatic liver diseases
including PBC (28, 52) and PSC (17, 55). The efficacy of
UDCA or TUDCA is attributed to its cytoprotective effects
(20, 63), preventing apoptosis (11) and choleretic effects on
hepatocytes (48) by increasing bile flow and biliary acid
secretion (9) and hepatocellular vesicular exocytosis (12).
TUDCA has been shown to be more effective than UDCA in
the enrichment of biliary UDCA and more effectively absorbed
by the intestine (31).

PKC modulates the effects of bile acids on a number of
epithelia, including cholangiocytes (1, 3, 13, 32, 44). For
example, both primary and secondary bile acids have been
shown to activate the expression of PKC isoenzymes, MAPK,
and phosphointositol 3-kinase in normal colonial epithelial
cells and colorectal cancer tissue (50). Furthermore, sodium
taurolithocholate reduces hepatocyte canalicular secretion
through activation of PKC-� (13). In hepatocytes, glyco-
chenodeoxycholate-induced apoptosis is associated with ac-
tivation and membrane translocation of PKC-�, PKC-�, and
PKC-� (32). In situ histological studies (51) have shown that
feeding of UDCA to bile duct-ligated rats decreases the
number of intrahepatic bile ducts. Both UDCA and TUDCA
inhibit cholangiocyte proliferation of bile duct-ligated rats
by activation of the Ca2�-dependent PKC-� (1). Moreover,
feeding of taurocholate and taurolithocholate to normal rats
increases cholangiocyte proliferation and the number of
ducts by activation and membrane translocation of PKC-�
(3). However, no information exists regarding the role and
mechanism of action of TUDCA in the regulation of chol-
angiocarcinoma growth.

Three main distinct signaling cascades exist in the MAPK
family of serine/threonine kinases: p38 MAPK, JNK, and p44
and p42 (encoded by ERK1 and ERK2, respectively) (14). The
MAPK ERK1 and ERK2 are proline-directed kinases that are
activated through concomitant phosphorylation of tyrosine and
threonine residues (4). p38 is a member of the MAPK family
with features most closely resembling those of the Saccharo-
myces cerevisiae protein HOG1 (15). The JNK family, which
includes JNK1, JNK2, and JNK3, is distantly related to the
MAPK family, members of which are activated by dual phos-
phorylation at a Thr-Pro-Tyr motif, specifically at Thr183 and
Tyr185 residues, in response to ultraviolet (UV) light (60). JNK

Address for reprint requests and other correspondence: G. LeSage, The
Univ. of Texas Houston Medical School, 6431 Fannin St., MSB 4.234,
Houston TX 77030 (E-mail: gene.lesage@uth.tmc.edu).

The costs of publication of this article were defrayed in part by the payment
of page charges. The article must therefore be hereby marked “advertisement”
in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Am J Physiol Gastrointest Liver Physiol 286: G973–G982, 2004.
First published December 30, 2003; 10.1152/ajpgi.00270.2003.

0193-1857/04 $5.00 Copyright © 2004 the American Physiological Societyhttp://www.ajpgi.org G973

 on M
ay 29, 2012

ajpgi.physiology.org
D

ow
nloaded from

 

http://ajpgi.physiology.org/


is phosphorylated by JNK-activating kinases (JNKK1 and
JNKK2), which are members of the MEK family (68).

The cAMP-dependent PKA-MEK-MAPK pathway is mod-
ulated via cross-talk with other intracellular signaling pathways
(64), including PKC, which studies have shown to be associ-
ated with activation of MAPK (50). The activation of the PKC
pathway is not always associated with activation of MAPK
(43). For example, PKC-� inhibits UV-induced activation of
caspase-3 in normal human keratinocytes by inhibition of p38
MAPK pathway (43). cAMP-dependent PKA is the major
substrate of cAMP, and cAMP-dependent signaling is associ-
ated with a wide range of biological responses, including
differentiation, survival, inhibition of growth, and apoptosis
(19, 37, 45, 64). The activation of signal-transduction pathways
by growth factors, hormones, and neurotransmitters is medi-
ated through two closely related MAPK, p44 and p42, that are
encoded by ERK1 and ERK2, respectively (14).

In this study, we evaluated the role and mechanisms of
action of TUDCA in the regulation of growth of the cholan-
giocarcinoma cell line Mz-ChA-1. We posed the following
questions: 1) Does TUDCA inhibit the growth of the cholan-
giocarcinoma cell line, Mz-ChA-1? 2) Are TUDCA-inhibitory
effects on Mz-ChA-1 growth associated with increases in
intracellular Ca2� concentration ([Ca2�]i) and activation of the
Ca2�-dependent PKC-�, which plays an important role in the
regulation of cholangiocyte functions (1, 3, 26, 27, 33, 41)? 3)
Does TUDCA stimulation of Ca2�-dependent PKC lead to
inhibition of MAPK activity? 4) Is TUDCA inhibition of
MAPK activity associated with changes in Raf-1 and B-Raf
activities, upstream regulators of MAPK? 5) Is TUDCA-
inhibition of MAPK associated with changes in the phosphor-
ylation of MAPK p42/44, p38, and JNK/stress-activated pro-
tein kinases (SAPKs)?

MATERIALS AND METHODS

Materials

Reagents were purchased from Sigma (St. Louis, MO) unless
otherwise indicated. The following antibodies were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA): mouse monoclonal
antibody against proliferating cell nuclear antigen (PCNA; clone
PC10); rabbit polyclonal antibody against Raf-1 (clone C-12); mouse
monoclonal antibody against B-Raf (clone F-7); horseradish peroxi-
dase (HRP)-conjugated donkey anti-rabbit IgG; HRP-conjugated goat
anti-mouse IgG; mouse monoclonal (IgG1) antibody p-JNK (clone
G-7), which detects JNK1, JNK2, and JNK3 phosphorylated at Thr183

and Tyr185 of human origin; rabbit polyclonal antibody (clone FL),
which was produced by immunization with full-length (amino acids
1–384) human JNK1 produced in Escherichia coli and reacts with
JNK1, JNK2 p54, and JNK3; mouse monoclonal (IgG) antibody pp38
(clone D-8), which detects Tyr182-phosphorylated MAPK p38, Mxi2,
and p38�; mouse monoclonal (IgG1) antibody p38 (clone A-12),
which detects total MAPK p38 and p38�; rabbit monoclonal (IgG)
antibody ERK1 (clone C-16), which detects the MAPK p44 and p42;
rabbit monoclonal (IgG) antibody ERK2 (clone C-14), which detects
the MAPK p44 and p42; and mouse monoclonal (IgG) antibody
pERK (clone N-18), which detects phosphorylated MAPK p44 and
p42; and rat Ca2�-dependent PKC-� antibody (rabbit IgG). [Methyl-
3H]thymidine and [�-32P]ATP were purchased from New England
Nuclear Life Science Products, (Boston, MA). Raf-1 immunoprecipi-
tation-kinase cascade assay kit, MAPK immunoprecipitation cascade
assay kit (which detects MAPK p44/p42), Ras activation assay kit,
protein A agarose beads, and protein G agarose beads were purchased

from Upstate Biotechnology (Lake Placid, NY). Nitrocellulose mem-
brane (0.2 �m) and Bio-Rad protein assay were purchased from
Bio-Rad Laboratories (Hercules, CA).

Cell Line Culture

Mz-ChA-1 cells (human gallbladder in origin) (36) were a gift from
Dr. Fitz (University of Colorado, Denver, CO). We have previously
used this cell line to evaluate the effect of gastrin and the �2-
adrenergic receptor agonist UK-14304 on cholangiocarcinoma growth
(33). Cells were maintained at 37°C in a 5% CO2 incubator with the
conditioned culture medium (CCM) composed of CMRL Medium-
1066 (Life Technologies, Grand Island, NY) supplemented with 10%
heat-inactivated fetal bovine serum, 1% penicillin and streptomycin,
and 2 mM l-glutamine.

Effect of TUDCA on the Growth of Mz-ChA-1 Cells

Measurement of [3H]thymidine incorporation. After trypsinization,
Mz-ChA-1 cells were suspended in CCM at 5 	 104 cells/ml, and 200
�l of the cell suspension were seeded into flat-bottomed 96-well
plates. After an initial incubation step of 4 h at 37°C in a 5% CO2

incubator, the cells were incubated at 37°C with TUDCA (0.2–200
�M). After incubation for 24–96 h, [3H]thymidine was put into each
well at 5.0 �Ci/ml and incubated for additional 4 h. [3H]thymidine
incorporation was measured by a scintillation counter. At the end of
each incubation period, we evaluated cell viability by trypan blue
exclusion.

Measurement of PCNA protein expression. Mz-ChA-1 cells (1.5 	
106) were seeded into flat-bottomed six-well plates and incubated in
CCM until 70% confluence. Subsequently, cells were incubated with
1) 0.2% BSA (basal value) or 2) TUDCA (200 �M) in the absence or
presence of BAPTA-AM (a chelator of [Ca2�]i; 5 �M) (33, 34) or H7
(a PKC-� inhibitor; 2 �M) (33) for 48 h. After the selected treatment,
cells were washed twice with ice-cold PBS and then lysis buffer (10
mM Tris, pH 7.4, 1% Triton X-100, 5 mM EDTA, 50 mM NaCl, 50
mM NaF, 0.1% BSA, 20 �g/ml aprotinin, 1 mM phenylmethylsulfo-
nyl fluoride, and 2 mM Na3VO4) was added into each well. Culture
plates were kept on ice for 30 min with gentle rocking, then cells were
scraped, collected in a microcentrifuge tube, and centrifuged at 300 g
for 10 min at 4°C. Following electrophoresis, protein samples (10 �g)
were transferred to a nitrocellulose membrane. The membrane was
immersed into a blocking solution consisting of 5% dry milk and 1	
TBST (50 mM Tris, 150 mM NaCl, 0.05% Tween-20) and incubated
with gentle rocking for 2 h. The membrane was incubated with
anti-PCNA antibody diluted to 1:200 as the primary antibody over-
night at 4°C. After being washed, the membrane was incubated with
HRP-conjugated anti-mouse IgG diluted to 1:3,000 for 1 h at room
temperature. After washes, proteins were visualized by using chemi-
luminescence (ECL Plus kit; Amersham Life Science). The intensity
of the bands was determined by scanning video densitometry using
the ChemiImager 4000 low-light imaging system (Alpha Innotech,
San Leandro, CA).

Effect of TUDCA on [Ca2�]i, and Protein Expression and
Membrane Translocation of the Ca2�-dependent PKC-�

After trypsinization, Mz-ChA-1 cells were transferred to a clean
tube and incubated for 1 h at 37°C (33, 34) to regenerate membrane
proteins damaged by trypsin digestion (35). Subsequently, cells were
stimulated for 15 min at 22°C with 0.2% BSA (basal value) or
TUDCA (200 �M) in the presence of 0.2% BSA. Mz-ChA-1 [Ca2�]i

levels were determined by a microfluorescent technique (1, 30) in
Mz-ChA-1 cells previously loaded with the fluorescent Ca2� indicator
fluo-3 (1 �M for 10 min). The fluo-3 fluorescence was converted to
[Ca2�]i levels by employing a calibration kit from Molecular Probes
(Eugene, OR) (30).

Cells (1.5 	 106) were seeded into flat-bottomed six-well plates
and incubated in CCM until they were grown to 70% confluence.
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Subsequently, cells were incubated with 0.2% BSA (basal) or
TUDCA (200 �M) for 90 min as described by us and others (7, 25, 27,
33, 41). After two washes with ice-cold PBS, lysis buffer was added
into each well (see Measurement of PCNA protein expression). Total
protein expression for PKC-� in Mz-ChA-1 cells (treated with BSA or
TUDCA for 90 min) was evaluated in whole cell lysate by immuno-
blots (25, 27, 33, 41).

PKC-� membrane translocation was evaluated by immunoblots
(25, 27, 33, 41) in a cytosol or membrane fraction (54) isolated from
Mz-ChA-1 cells treated with BSA or TUDCA for 90 min. The cytosol
and membrane fractions were obtained from Mz-ChA-1 as described
previously (54). Briefly, Mz-ChA-1 cells in 100-mm dishes were
washed with PBS, extracted in 1 ml of buffer A (20 mM Tris, pH 7.5,
0.5 mM EDTA, 0.5 mM EGTA, 25 �g/ml each aprotinin and
leupeptin), and homogenized with 30 strokes of a Dounce homoge-
nizer. The homogenate was transferred to a microcentrifuge tube and
centrifuged in a microcentrifuge at 4°C at 10,000 g for 2 min to
clarify. The clarified homogenate was centrifuged at 4°C in an
ultracentrifuge at 45,000 g for 30 min. The supernatant was collected
as the cytosol fraction. The pellet was washed twice with buffer A and
resuspended in 500 �l of buffer A with 0.5% Triton X-100. The pellet
solution was vortexed, incubated on ice for 30 min, and centrifuged in
a microcentrifuge at 4°C at 10,000 g for 2 min. The supernatant was
collected as the membrane fraction. Immunoblots for PKC-� were
performed as described above for Western immunoblotting for PCNA
expression except for the use of mouse anti-PKC-� (diluted to
1:1,000) as the primary antibody and HRP-conjugated anti-mouse IgG
diluted to 1:3,000 as a secondary antibody. The intensity of the bands
was determined by scanning video densitometry using the Chemi-
Imager 4000. The effects of TUDCA on [Ca2�]i and PKC-� protein
expression were performed at different incubation times with TUDCA
(15 min for Ca2� and 90 min for PKC), because we anticipated that
the Ca2�-dependent activation of PKC-� protein expression would
occur at a later time than the increase in [Ca2�]i. This is due both to
the fact that that the increased calcium signal is upstream to the
increase in protein expression as well as the time lag required for
synthesis of new proteins (90 min for activation of PKC) (7, 27, 41).
The same time period (15 min for Ca2� and 90 min for PKC) has been
used by us in studies aimed to evaluate the effect of bile acids (e.g.,
UDCA and TUDCA) (1), gastrointestinal hormones (e.g., insulin)
(41), or nerve receptor agonists (e.g., the D2 dopaminergic receptor
agonist quinelorane) (25) on intracellular Ca2� levels and the expres-
sion and membrane translocation of Ca2�-dependent PKC isoforms.
Furthermore, other studies have shown that prolonged incubation time
(i.e., 90 min) is necessary for the activation of PKC-� and PKC-�,
which are involved in insulin-like growth factor-I migration of colonic
epithelial cells (7).

Expression of Raf-1 and B-Raf in Mz-ChA-1 Cells

The protein expression of Raf-1 and B-Raf in Mz-ChA-1 cells was
evaluated by immunoblotting (25, 27, 34) using anti-Raf-1 and anti-
B-Raf primary antibodies and the corresponding secondary antibod-

Fig. 1. A: Mz-ChA-1 cells were incubated with tauroursodeoxycholate
(TUDCA; 0–200 �M) for 48 h. TUDCA inhibited [3H]thymidine incorpora-
tion from 2 to 200 �M. Data are means 
 SE of 6 experiments. *P � 0.05 vs.
the corresponding basal values. B: at 200 �M, the effect of TUDCA on
[3H]thymidine incorporation of Mz-ChA-1 cells was determined from 24 to
96 h. TUDCA significantly inhibited [3H]thymidine incorporation from 24 to
96 h of the incubation period. Data are means 
 SE of 12 experiments. *P �
0.05 vs. the corresponding basal values. C: effects of TUDCA (200 �M for
48 h) on the proliferative capacity of Mz-ChA-1 cells were evaluated by
immunoblots for proliferating cell nuclear antigen (PCNA) in the absence
or presence of BAPTA-AM or H7. TUDCA inhibited PCNA protein expres-
sion in Mz-ChA-1. TUDCA inhibition of cholangiocarcinoma growth was
blocked by BAPTA-AM and H7. Data are means 
 SE of at least 3
experiments. *P � 0.05 vs. the corresponding basal values.
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ies. After washes, bands were visualized by using chemiluminescence
(ECL Plus). The intensity of the bands was determined by scanning
video densitometry using the ChemiImager 4000.

Evaluation of the Transduction Pathways by Which
TUDCA Regulates Cholangiocarcinoma Growth: Effect of
TUDCA on Raf-1, B-Raf, and MAPK Activities and on
Phosphorylation of MAPK p42/44, p38, and JNK/SAPKs

The effect of TUDCA (200 �M) on the activity of Raf-1, B-Raf,
and MAPK was performed as previously described by us (34). Cells
in the culture medium were seeded into flat-bottomed six-well plates
and incubated until they became 70% confluent. Subsequently, cells
were placed in serum-free medium (CMRL Medium-1066 supple-
mented with 0.1% BSA, 2 mM l-glutamine, 100 U/ml penicillin, and
100 �g/ml streptomycin) and cultured for an additional 24 h. After
serum starvation, Mz-ChA-1 cells were incubated for 24 h with 100
nM EGF or TUDCA (200 �M containing 100 nM EGF) in the
absence or presence of BAPTA-AM (5 �M) or H7 (2 �M). The effect
of TUDCA on MAPK activity (using an antibody against MAPK1/2,
ERK1/2) in Mz-ChA-1 cells was also evaluated in the presence of
serum. Mz-ChA-1 cells (1.5 	 106) were seeded into flat-bottomed
six-well plates and incubated in CCM until 70% confluence. Subse-
quently, cells were incubated with 0.2% BSA (basal value) or
TUDCA (200 �M) for 24 h. Subsequently, cells were washed twice
with ice-cold PBS and incubated with lysis buffer (10 mM Tris, pH
7.4, 1% Triton X-100, 5 mM EDTA, 50 mM NaCl, 50 mM NaF, 0.1%
BSA, 20 �g/ml aprotinin, 1 mM phenylmethylsulfonyl fluoride, and 2
mM Na3VO4) for 30 min on ice. Samples were collected, and total
protein concentration was evaluated by using the Pierce protein assay
system. The cell samples were treated according to the manufacturer’s
protocols (Upstate Biotechnology) of the Raf-1 immunoprecipitation
kinase cascade assay kit and MAPK immunoprecipitation cascade
assay kit, with the difference that in the B-raf assay goat anti-B-Raf
antibodies (clone C-19) instead of anti-Raf-1 were used. Raf-1, B-Raf,
and MAPK activities were evaluated with the phosphorylated MBP
under the presence of [�-32P]ATP by using a scintillation counter. The
kit for the detection of MAPK activity recognizes the MAPK p44/42
(i.e., ERK1/2).

Mz-ChA-1 cells (1.5 	 106) were seeded into flat-bottomed six-
well plates and incubated in CCM until 70% confluence. Subse-
quently, Mz-ChA-1 cells were incubated for 24 h with 0.2% BSA or
TUDCA (200 �M) in the absence or presence of BAPTA-AM (5 �M)
or H7 (2 �M). The protein expression of total and phosphorylated
MAPK p42/44, p38, and JNK/SAPKs in Mz-ChA-1 cells was evalu-
ated by immunoblotting (25, 27, 34) using the selected primary
antibodies and the corresponding secondary antibodies. After washes,

Fig. 2. Effect of TUDCA on intracellular Ca2� concentration ([Ca2�]i) (A),
total protein expression (B), and membrane translocation (C) for PKC-� in
Mz-ChA-1 cells. A: [Ca2�]i levels were determined by a microfluorescent
technique in Mz-ChA-1 cells previously loaded with the fluorescent Ca2�

indicator fluo-3 (1 �M for 10 min). The fluo-3 fluorescence was converted to
[Ca2�]i levels by employing a calibration kit from Molecular Probes. TUDCA
(added at time 0) induced a 2-fold persistent increase in [Ca2�]i. Data are
means 
 SE of 3 experiments. *P � 0.05 vs. the corresponding basal values.
B: TUDCA (200 �M for 90 min) increased total PKC-� protein expression in
Mz-ChA-1 cells. Data are means 
 SE of 23 experiments. *P � 0.05 vs. the
corresponding basal values. C: immunoblots for PKC-� in a cytosol and
membrane fraction isolated from Mz-ChA-1 cells treated with 0.2% BSA or
TUDCA for 90 min. In Mz-ChA-1 cells treated with 0.2% BSA, the majority
of PKC-� is found in the cytosol fraction. On the addition of TUDCA, PKC-�
protein expression decreases significantly in the cytosol fraction. After
TUDCA treatment, loss of PKC-� from the cytosol fraction was associated
with an increase in PKC-� protein expression in the membrane fraction of
Mz-ChA-1 cells. Data are means 
 SE of 6 experiments. *P � 0.05 vs. the
corresponding basal values. #P � 0.05 vs. the corresponding value of the
cytosol fraction.
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bands were visualized by using chemiluminescence (ECL Plus). The
intensity of the bands was determined by scanning video densitometry
using the ChemiImager 4000.

Statistical Analysis

All data are expressed as means 
 SE. The differences between
groups were analyzed by Student’s t-test when two groups were
analyzed or analysis of variance (ANOVA) if more than two groups
were analyzed.

RESULTS

Time- and Concentration-Dependent Inhibition of the
Growth of Mz-ChA-1 Cells by TUDCA

After 48 h of incubation, TUDCA significantly inhibited
[3H]thymidine incorporation of Mz-ChA-1 cells at concentra-
tions ranging from 2 to 200 �M (Fig. 1A). At the concentration
of 200 �M, TUDCA significantly inhibited [3H]thymidine
incorporation in Mz-ChA-1 cells from 24 to 96 h of the
incubation period (Fig. 1B). The data show that TUDCA
inhibits the growth of Mz-ChA-1 cells in a time- and concen-

tration-dependent fashion. TUDCA (48 h at 200 �M) inhibited
PCNA protein expression (an index of cell replication) (40) of
Mz-ChA-1 cells (Fig. 1C). Consistent with the concept that
PKC-� regulates TUDCA modulation of cholangiocarcinoma
growth, TUDCA inhibition of PCNA protein expression of
Mz-ChA-1 was blocked by BAPTA-AM and H7 (Fig. 1C).
Trypan blue exclusion analysis showed that TUDCA did not
increase the percentage of dead cells compared with controls.

TUDCA Increases [Ca2�]i and PKC-� Protein Expression
and Induces Membrane Translocation of PKC-� in
Mz-ChA-1 cells

TUDCA (200 �M) caused a marked and sustained increase
in [Ca2�]i levels in Mz-ChA-1 cells (Fig. 2A). Previous studies
from our laboratory (3) in cholangiocytes isolated from bile
duct-ligated rats demonstrated that TUDCA mobilizes Ca2�

from intracellular stores rather than originating from extracel-
lular stores. Further studies are needed to establish the source
of mobilized calcium in cholangiocarcinoma cells.

Fig. 3. A: Mz-ChA-1 cells express the protein for Raf-1 and
B-Raf. MW, molecular weight. B: stimulation of Mz-ChA-1
cells with EGF (100 nM) for 24 h caused a significant increase
in B-Raf activity. EGF stimulation of B-Raf activity was not
prevented by TUDCA after 24 h of incubation. Data are
means 
 SE of 5 experiments. *P � 0.05 vs. the control value
(stimulated with EGF).
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Immunoblotting analysis shows that Mz-ChA-1 cells ex-
press the protein for the Ca2�-dependent PKC-� and that
TUDCA increased total PKC-� protein expression in Mz-
ChA-1 cells (Fig. 2B). Figure 2C shows the subcellular distri-
bution of PKC-� in Mz-ChA-1 cells treated with 0.2% BSA or
TUDCA for 90 min. In Mz-ChA-1 cells treated with 0.2%
BSA, the majority of PKC-� is found in the cytosol fraction
(Fig. 2C); however, on addition of TUDCA, PKC-� protein
expression significantly decreases in the cytosol fraction (Fig.
2C). After TUDCA treatment, loss of PKC-� from the cytosol
fraction was associated with an increase in PKC-� protein
expression in the membrane fraction of Mz-ChA-1 cells (Fig.
2C). The magnitude of increases of total PKC-� expression
and membrane translocation of PKC-� by TUDCA were sim-
ilar to that we previously described by gastrin (27). The
activation of PKC is due to increases in membrane-bound
PKC-� following TUDCA treatment. Figure 2C shows a sig-
nificant increase in the membrane fraction for PKC-� follow-
ing TUDCA treatment. The increase in total PKC-� is com-
monly seen for other activators of PKC (e.g., PMA) (24),
which presumably provides more PKC-� available for trans-
location.

Mz-ChA-1 Cells Express Raf-1 and B-Raf: Effect of
TUDCA on Raf-1, B-Raf, and MAPK Activities and on
Phosphorylation of MAPK p42/44, p38, and JNK/SAPKs

As shown in Fig. 3A, Mz-ChA-1 cells express the proteins
for Raf-1 and B-Raf (74 and 95 kDa, respectively). Stimulation
of Mz-ChA-1 cells with EGF (100 nM) for 24 h caused a
significant (P � 0.05) increase in B-Raf (Fig. 3B) but not Raf-1
(results not shown) activity. EGF stimulation of B-Raf activity
was not prevented by TUDCA after 24 h of incubation
(Fig. 3B).

After serum starvation, stimulation of Mz-ChA-1 cells with
EGF (100 nM) for 24 h significantly enhanced MAPK activity
(i.e., ERK1/2) of these cells (Fig. 4A). EGF stimulation of
MAPK activity of Mz-ChA-1 cells was inhibited by TUDCA
(Fig. 4A). TUDCA inhibition of EGF-induced MAPK activity
was blocked by pretreatment of Mz-ChA-1 cells with
BAPTA-AM and H7 (Fig. 4A). Similar results (related to
MAPK activity of ERK1/2) were obtained when Mz-ChA-1
cells were treated with TUDCA in the presence of serum (Fig.
4B). TUDCA inhibited basal MAPK activity of Mz-ChA-1
cells (Fig. 4B).

TUDCA (200 �M) inhibited the phosphorylation of MAPK
p42/44 (expressed as ratio to total protein expression for
p42/44), whose protein expression was similar to that of
Mz-ChA-1 treated with BSA (Fig. 5A). Consistent with the
concept that the Ca2�-PKC pathway regulates cholangiocarci-
noma growth by changes in MAPK activity, TUDCA inhibi-
tion of MAPK p42/44 phosphorylation was blocked by
BAPTA-AM and H7 (Fig. 5A). TUDCA inhibition of cholan-

Fig. 5. Effect of TUDCA on the phosphorylation of MAPK p44/p42 (A), p38 (B), and JNK/stress-activated protein kinases (SAPKs)
(C) in Mz-ChA-1 cells after 24 h of incubation time. A: TUDCA (200 �M) inhibited the phosphorylation of MAPK p42/44
(expressed as ratio to total protein expression for p42/44), whose protein expression was similar to that Mz-ChA-1 treated with
BSA. Consistent with the concept that the Ca2�-PKC pathway regulates cholangiocarcinoma growth by changes in MAPK activity,
TUDCA inhibition of MAPK p42/44 phosphorylation was blocked by BAPTA-AM and H7. B and C: TUDCA inhibition of
cholangiocarcinoma growth was not associated with changes in the phosphorylation of MAPK p38 and JNK/SAPKs (expressed as
ratio to total protein expression for MAPK p38 and JNK/SAPKs, respectively). Data are means 
 SE of 7 experiments. *P � 0.05
vs. the corresponding basal value.

Fig. 4. A: effect of TUDCA (200 �M in the absence or presence of
BAPTA-AM or H7) on EGF-induced MAPK activity in Mz-ChA-1 cells
after 24 h of incubation time. Stimulation of Mz-ChA-1 cells with EGF for
24 h significantly enhanced MAPK activity of these cells. TUDCA inhib-
ited EGF-induced increase in MAPK activity of Mz-ChA-1 cells. TUDCA
inhibition of EGF-induced MAPK activity was blocked by BAPTA-AM
and H7. Data are means 
 SE of at least 3 experiments. *P � 0.05 vs. the
control value (stimulated with EGF). B: effect of TUDCA (200 �M) on
basal MAPK activity in Mz-ChA-1 cells after 24 h of incubation time.
TUDCA inhibited basal MAPK activity (i.e., ERK1/2) of Mz-ChA-1 cells.
Data are means 
 SE of at least 3 experiments. *P � 0.05 vs. the
corresponding basal value.
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giocarcinoma growth was not associated with changes in the
phosphorylation of MAPK p38 and JNK/SAPKs (expressed as
ratio to total protein expression for MAPK p38 and JNK/
SAPKs, respectively) (Fig. 5, B and C). The data suggest that
TUDCA inhibits Mz-ChA-1 growth through a signal transduc-
tion pathway involving MAPK p42/44 and PKC-� but inde-
pendent from Raf proteins and MAPK p38 and JNK/SAPKs.

DISCUSSION

The study shows that TUDCA inhibits the growth of the
human cholangiocarcinoma cell line Mz-ChA-1. TUDCA in-
hibition of growth occurs in a dose- (2–200 �M) and time-
(24–96 h) dependent fashion. We also show that TUDCA
increased [Ca2�]i and PKC-� protein expression and PKC-�
membrane translocation and that TUDCA inhibition of chol-
angiocarcinoma growth was partially blocked by the [Ca2�]i

chelator BAPTA-AM and the PKC-� inhibitor H7. Further-
more, TUDCA inhibited MAPK activity, and the inhibitory
effects of TUDCA on EGF-stimulated MAPK activity were
partially blocked by BAPTA-AM and H7. TUDCA inhibited
phosphorylation of MAPK p42/44 but not p38 and JNK/
SAPKs. Consistent with the concept that the Ca2�-PKC path-
way regulates cholangiocarcinoma growth by changes in
MAPK activity, TUDCA inhibition of phosphorylation of
MAPK p42/44 was blocked by BAPTA-AM and H7. TUDCA
did not inhibit Raf-1 or B-Raf activities. The data suggest that
TUDCA inhibition of MAPK and Mz-ChA-1 growth occurs by
activation of Ca2�-dependent PKC-� upstream to MAPK but
that the inhibition occurs independent of the Raf proteins.

PKC-� regulates a variety of cellular responses, including
proliferation and apoptosis, through the activation (by phos-
phorylation) of Ras-Raf-MEK-MAPK (39, 66). Whereas in
most cells PKC, activated by hormones and/or growth factors,
mediates the stimulation of cell growth, in other cell types it
exerts a negative control (5). The differential pattern of PKC in
the modulation of cell growth may be due to the varying
expressions of different isoforms of the PKC superfamily (47).
For example, in the crypt-villus axis, PKC-� mediates inhibi-
tion of growth of intestinal epithelial cells (46). The activation
of PKC-� decreases cell growth and tumorigenicity of intesti-
nal cell lines (8). In the liver, PKC-� has been shown to play
an important role in the regulation of cholangiocyte prolifera-
tion (1, 3, 26, 27, 33). For example, with activation of PKC-�
(by gastrin) we found inhibition of cAMP levels and cell
replication in cholangiocytes from bile duct-ligated rats (26,
27) and cholangiocarcinoma cell lines (33). Whereas activation
of PKC-� (by taurocholate and taurolithocholate) leads to
activation of cholangiocyte proliferation of normal cholangio-
cytes (3), PKC-� membrane translocation (by UDCA and
TUDCA) induces inhibition of cholangiocyte proliferation
from bile duct-ligated rats (1). Phorbol 12,13-dibutyrate (a
PKC activator) (6) also inhibits the proliferation of Mz-ChA-1
cells (33). The different cross-talk between Ca2�-dependent
PKC and cAMP (which leads to stimulatory or inhibitory
effects on MAPK and cell proliferation) (22, 65) is due to the
type of receptor [gastrin (26, 27)] or transporter (Na�-depen-
dent bile acid transporter) up- or downregulated (1, 3), which
differentially activates different PKC isoforms (1, 3, 26, 27),
thus leading to activation or inhibition of cholangiocyte pro-
liferation. These interactions may result in a different cross-

talk between intracellular Ca2�-PKC and specific adenylate
cyclase isoforms, leading to inhibition or stimulation of ade-
nylate cyclase and therefore of cAMP, MAPK, and cell pro-
liferation.

In addition, PKC has been shown to mediate the effects of
bile acids on a number of epithelia, including cholangiocytes
(1, 3, 13, 32, 44). In our study, TUDCA inhibition of MAPK
activities and cholangiocyte PCNA protein expression was
abrogated by the presence of the [Ca2�]i chelator (BAPTA-
AM) (27) and a Ca2�-dependent PKC-� inhibitor (H7) (27),
compounds that were previously used to ascertain the role of
the Ca2�-dependent PKC-� in the regulation of cholangiocyte
functions (27). These findings support the idea that TUDCA
inhibition of MAPK and cholangiocarcinoma growth is PKC-�
dependent. Although phosphorylation of MAPK by PKC-�
may induce the activation of MAPK (66), in this study and our
previous study involving gastrin inhibition of Mz-ChA-1 chol-
angiocarcinoma growth (33) PKC-� inhibits MAPK. In sup-
port of our findings, recent studies have shown that the acti-
vation of PKC pathway is not always associated with activation
of MAPK (43). For example, PKC-� inhibits UV-induced
activation of caspase-3 in normal human keratinocytes by
inhibition of p38 MAPK pathway (43). Cross-talk between the
PKC-� pathway and other not yet identified pathways may also
be involved in TUDCA inhibition of cholangiocarcinoma
growth. TUDCA may also inhibit cholangiocarcinoma growth
by reducing cyclooxygenase-2 (COX-2) since COX-2 overex-
pression in cholangiocarcinoma (59) may promote growth, and
endogenous bile acids have been shown to alter gene expres-
sion of COX-2 by a PKC-dependent mechanism (67).

Bile acid modulation of MAPK has been shown to alter bile
secretion (38), cell proliferation (49), and apoptosis (29).
Although bile acids have been shown to modify cell growth
and MAPK through phosphorylation of the EGF receptor (53),
the subsequent bile acid-induced changes in MAPK (in con-
trast to this study) were dependent on the activity of Ras and
Raf. Thus it is unlikely that TUDCA inhibits growth by
altering EGF receptor in Mz-ChA-1 cells. In other studies (38),
TUDCA enhances MAPK-dependent bile secretion in hepato-
cytes by increasing phosphoinositol 3-kinase, which leads to
Ras-dependent activation of ERK1/2. Because the TUDCA
stimulation of MAPK in hepatocytes was independent of PKC
(38), TUDCA inhibition of cholangiocarcinoma MAPK may
be due to the ability of TUDCA to increase PKC-� in this cell
line.

Cholangiocarcinoma is a liver neoplasm arising from intra-
hepatic bile duct and the extrahepatic bile ducts (62). Cholan-
giocarcinoma exhibits a poor prognosis, and surgical resection
is virtually the only measure for the curative treatment, al-
though other attempts, including radiotherapy (23) and photo-
dynamic therapy (56), to relieve biliary obstruction due to
unresectable tumors have been demonstrated successfully as an
adjuvant therapy following surgery or as palliative therapy.
However, to date, some gastrointestinal hormones and neu-
ropeptides have been reported to be effective in the modulation
of the growth of cholangiocarcinoma (21, 27, 61). Somatosta-
tin, for example, prevents the growth of human cholangiocar-
cinoma cells implanted in athymic mice through somatostatin
receptors (61). Also, as we have previously shown, gastrin
inhibits the growth of human cholangiocarcinoma cell lines
through inostiol 1,4,5-trisphosphate- and PKC-�-dependent
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pathways (33). �2-Adrenergic receptor stimulation also inhib-
its the growth via cAMP-PKA-Raf-MAPK-dependent path-
ways (34). Because in humans, cholestatic liver diseases are
important risk factors for cholangiocarcinoma, the finding that
TUDCA is effective in improving clinical and histological
features of cholestatic liver diseases, including PBC and PSC
(2, 52), has important pathophysiological relevance. Our find-
ings may suggest that the use of TUDCA in these clinical
settings may not only improve clinical outcomes of cholestatic
liver diseases by slowing the development of these diseases but
has the potential to prevent the initiation or the development of
cholangiocarcinoma.
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