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Abstract

Resistance to targeted EGFR inhibitors is likely to develop in
EGFR-mutant lung cancers. Early identification of innate or
acquired resistance mechanisms to these agents is essential to
direct development of future therapies. We describe the detection
of heterogeneous mechanisms of resistance within populations
of EGFR-mutant cells (PC9 and/or NCI-H1975) with acquired
resistance to current and newly developed EGFR tyrosine kinase
inhibitors, including AZD9291. We report the detection of NRAS
mutations, including a novel E63K mutation, and a gain of copy
number of WT NRAS or WT KRAS in cell populations resistant to
gefitinib, afatinib,WZ4002, or AZD9291. Comparedwith parental
cells, a number of resistant cell populations were more sensitive to
inhibition by the MEK inhibitor selumetinib (AZD6244; ARRY-

142886) when treated in combination with the originating EGFR
inhibitor. In vitro, a combination of AZD9291 with selumetinib
prevented emergence of resistance in PC9 cells and delayed resis-
tance inNCI-H1975 cells. In vivo, concomitant dosing of AZD9291
with selumetinib caused regression of AZD9291-resistant tumors
in an EGFRm/T790M transgenic model. Our data support the use
of a combination of AZD9291 with a MEK inhibitor to delay or
prevent resistance to AZD9291 in EGFRm and/or EGFRm/T790M
tumors. Furthermore, these findings suggest that NRAS modifica-
tions in tumor samples from patients who have progressed on
current or EGFR inhibitors in development may support subse-
quent treatment with a combination of EGFR andMEK inhibition.
Cancer Res; 75(12); 2489–500. �2015 AACR.

Introduction
Tumors containing activating EGFR mutations (EGFRm; e.g.,

deletion in exon 19 or an L858R point mutation) account for
about 20% of advanced non–small cell lung cancer (NSCLC;
ref. 1). Although these mutations also sensitize EGFR to inhibi-
tion by the established tyrosine kinase inhibitor (TKI) therapies
erlotinib and gefitinib (2), almost all tumors will develop
acquired resistance to these TKIs within 9 to 15 months (3, 4).
In approximately 60% of cases, this acquired resistance is asso-
ciated with an additional T790M mutation in EGFR (5–7). As

there are currently no treatments approved for patients with these
tumors (8, 9), new EGFR TKIs such as AZD9291, WZ4002, and
CO-1686 are being developed, which inhibit both EGFRm and
T790M mutations in preclinical models (10–12). AZD9291 and
CO-1686 have also shown promising phase 1 activity in patients
with T790M-advanced NSCLC who have progressed while on
prior therapywith an EGFR-TKI (10, 11). These newTKIsmay also
provide treatment options in the TKI-naive setting for patients
with advanced EGFRm NSCLC. However, despite the potential
improvements from therapy with these TKIs, experience with
targeted agents suggests that resistance to these drugs may also
emerge and potentially limit their effectiveness. Therefore, iden-
tification of resistance mechanisms is important to drive new
therapeutic strategies for treating drug resistance in patients.

In vitro, EGFRm cells chronically exposed to escalating doses of
gefitinib or erlotinib acquire clinically relevant resistancemechan-
isms (13, 14), and subsequent studies have identified a range of
further potential resistance mechanisms (15–20). Although the
clinical importance of many of these mechanisms remains to be
determined, trying to predict acquired resistance, especially to
new emerging agents such as AZD9291, is a critical area of
research. To date, resistance mechanisms have typically been
determined from single clonal lines selected from resistant popu-
lations of cancer cells, and therefore may represent only a small
percentage of the original cancer cell population. Because human
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NSCLC samples are heterogeneous (21–23) and tumors are likely
to derive acquired resistance through multiple mechanisms, we
postulated that it may be better to take a population approach to
understanding the diversity and interplay of resistance mechan-
isms. We studied multiple cell populations resistant to gefitinib,
afatinib, WZ4002, or AZD9291 to identify predominantmechan-
isms of resistance and to investigate signaling pathways activated
by various resistance mechanisms.

Materials and Methods
Cell lines, cell culture, and compound reagents

All AstraZeneca cell lines were authenticated by short-tandem
repeat analysis (STR). PC9 cells (obtained 2011, STR tested May
2013) were from Akiko Hiraide, PreclinicalSciences R&D, AZ,
Japan. NCI-H1975 (CRL-5908, obtained 2004, STR tested Nov
2012), NCI-H820 (HTB-181, obtained 2011, STR tested Jan
2013), and HCC827 (CRL-2868, obtained 2012, STR tested Oct
2012) cells were obtained from the ATCC. HCC-2279 (K72279,
obtained 2013, STR tested Mar 2013) cells were obtained from
KCLB. Cells were cultured in RPMI containing 10% FCS with
2 mmol/L glutamine, supplemented with EGFR inhibitor for
resistant cell populations. Selumetinib, gefitinib, afatinib,
WZ4002, BMS-536924, AZD5363, AZD2014, AZD8055, GDC-
0941, AZD4547, AZD1152-HQPA, and AZD9291 were synthe-
sized according to published methods. AZ_6592, AZ_0012,
AZ_1902 and AZ_9424 in house compounds (AstraZeneca).

In vitro cell assays
Phenotypic cell assays, immunoblotting, and RAS activation

assays were carried out as previously described (10, 24) and
detailed in Supplementary Methods. Cells were transfected using
Lipofectamine RNAiMAX reagent, Invitrogen, FuGENE 6 Trans-
fection Reagent, Promega or by electroporation, MaxCyte. siRNA
and DNA constructs are detailed in Supplementary Methods.

Genetic analysis
SnaPshotmutation analysis was carried as previously described

(25). Targeted and whole-exome sequencing were performed on
MiSeq andHiSeq platforms, Illumina; Ion Torrent PGMplatform,
Life Technologies and by Sanger di-deoxy sequencing. Compar-
ative genomic hybridization was performed using SurePrint G3
Human CGH microarrays, Agilent Technologies. Sequence data
processing, mutation detection, and gene copy-number assess-
ment were carried out as described in Supplementary Methods.
Data are accessible in NCBI's Sequence Read Archive accession
number SRP044079 and NCBI's Gene Expression Omnibus
(GEO) accession number GSE59239.

Transgenic mouse studies and MRI
In vivo experiments were carried out as previously described

using both EGFRL858RþT790M and EGFRL858R transgenic models
(10). Details are included in Supplementary Methods.

Results
Generation of EGFR-mutant cell populations resistant to
AZD9291 and other EGFR TKIs

To carry out a broad investigation into acquired resistance to
EGFR inhibitors, we generated in parallel multiple EGFRm (PC9;
Ex19del. chosen as a validated cell line for modeling EGFR

inhibitor resistance; ref. 26) and EGFRm/T790M (PC9 derivatives
and NCI-H1975; L858R/T790M) cell populations with induced
resistance to gefitinib, afatinib, WZ4002, or AZD9291, using
either a dose-escalation method or by culturing the cells in a
single dose of AZD9291 (Supplementary Table S1).

Resistance to AZD9291 and other EGFR TKIs is often associated
with increased sensitivity to MEK inhibition

To investigate whether the survival of resistant populations was
through activation of alternative signaling pathways that circum-
vent EGFRdependency,weused adiverse panel of small-molecule
inhibitors representing key signaling pathways or emerging resis-
tance mechanisms (Supplementary Table S2). The ability of each
agent, in the presence of originating EGFR TKI, to inhibit cell
growth was measured using an in vitro phenotypic assay, and IC50

values determined following 72 hours treatment (Table 1; Sup-
plementary Table S3). It was striking that 13 of 28 PC9-resistant
populations and 2 of 4 NCI-H1975–resistant populations were
greater than five times more sensitive to the MEK inhibitor
selumetinib in combination with the originating EGFR inhibitor,
when compared with the corresponding parental cells treated
with selumetinib. We therefore focused subsequent studies on
understanding mechanisms of selumetinib sensitivity in these
populations.

To confirm that increased selumetinib sensitivity was related to
the RAS–MAPK pathway inhibition, phosphorylation levels of
ERK1/2 and MEK1/2 were analyzed by immunoblotting PC9
parental and resistant populations grown in the presence of EGFR
inhibitor and treated with increasing concentrations of selume-
tinib. Resistance to selumetinib in the PC9, PC9 GR_4 and PC9
GR_5 cells was associated with a strong induction of phosphor-
ylated MEK and weaker inhibition of ERK phosphorylation when
compared with the effects of selumetinib in the sensitive cell
populations, PC9 GR_2 and PC9 AZDR_4 (Fig. 1A). The depen-
dency of EGFR resistant cell populations on RAS–MAPK activity
was further analyzed using PC9 WZR_1 cells, which showed >5-
fold increased sensitivity to selumetinib (Table 1). Consistent
with PC9 GR_2 and AZDR_4 populations, WZR_1 cells main-
tained in presence of WZ4002 demonstrated expected inhibition
of phosphorylated EGFR, and phosphorylated ERK (Fig. 1Bi) and
growth inhibition (Fig. 1C) were highly sensitive to selumetinib
treatment. In contrast, WZR_1 cells that had been cultured in the
absence of WZ4002 displayed an EGFR and selumetinib ERK
sensitivity profile similar to that seen in PC9 parental cells namely
weak inhibition of ERK phosphorylation and strong induction of
pMEK (Fig. 1A and 1Bii), with associated growth inhibition
refractory to selumetinib (Fig. 1C). The strong increase in levels
of phosphorylated MEK1/2 in response to selumetinib treatment
in the resistant compared with the sensitive populations (Fig. 1A
and 1Bi) suggests a difference in pathway activity upstream of
MEK between sensitive and resistant populations in response to
relief of negative feedback loops upon MEK inhibition.

Comparison of genetic alterations across multiple populations
of EGFRm or EGFRm/T790M cells resistant to AZD9291 and
other EGFR TKIs

To investigate the molecular drivers of EGFR TKI resistance, we
analyzed DNA samples prepared from parental and a selection of
32 resistant populations (Supplementary Table S1) for the pres-
ence of gene mutations and/or copy-number changes across a
panel of cancer associated genes using multiple assay platforms.
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The genetic modifications detected and associated allele frequen-
cies for PC9 and NCI-H1975 populations are summarized
in Table 1; Supplementary Fig. S1. Each mutation detected was
confirmed across at least two different assay platforms (Supple-
mentary Table S4).

Across the PC9populations, 7 of 8 gefitinib- and 2of 3 afatinib-
resistant populations had detectable T790M mutations, whereas
none of the populations resistant to theWZ4002or AZD9291had
acquired a detectable T790M mutation (Table 1). The T790M
gefitinib-resistant populations mostly showed sensitivity to
AZD9291, with dose–response curves indicating almost all cells
in populations PC9 GR_4, 6, and 7 were sensitive to AZD9291
(Supplementary Fig. S2Ai). However, less than 50% of cells in
populations PC9GR_1 (T790M,KRAS gain 5.43-fold), PC9GR_3
(T790M), and PC9 GR_5 (T790M) were sensitive to growth
inhibition by AZD9291 (Supplementary Fig. S2Aii), suggesting
that these populations contained heterogeneous resistant
mechanisms. The IC50 values across all AZD9291-sensitive cells
were similar (Supplementary Fig S2B). Although T790M was
detected within the PC9 GR_8 (T790M, KRAS gain 7.06-fold)
population, these cells showed no sensitivity to AZD9291 (Sup-
plementary Fig. S2Aiii), suggesting that the entire population

contained resistant clones. This observation of heterogenenous
mechanisms of resistance to gefitinib within populations is con-
sistent with clinical setting, supporting use of this population
approach for understanding resistance dynamics.

Notably, PC9-resistant cell populations lacking detectable
T790M frequently displayed increased sensitivity to selumetinib
in combination with EGFR inhibition. In selumetinib-sensitive
EGFRm/T790M populations with induced resistance to EGFR
inhibitors, no additional EGFR mutations were detected. This
suggests that RAS–MAPK signaling was important for driving
resistance in the absence of EGFR signaling (Table 1).

Interestingly, a number of different NRAS alterations were
observed in PC9 populations resistant to AZD9291, gefitinib and
WZ4002, and NCI-H1975 cells resistant to AZD9291 (Table 1).
Notably, we observed a novel noncanonical E63K mutation in
NRAS in the only gefitinib-resistant T790M-negative PC9 popu-
lation and in two AZD9291-resistant PC9 populations (Table 1;
Supplementary Fig. S3). This novelNRASmutation occurs within
the functional domain at a sequence position parallel to somatic
mutations observed in both KRAS (27) and HRAS (28). We
also identified functionally activating NRAS G12V and G12R
mutations in two different AZD9291-resistant PC9 populations

Table 1. IC50 (mmol/L) values from cell growth inhibition assays comparing compound sensitivity between parental and resistant cell populations

Cell population
Genetic alterations detected within
resistant populations Selumetinib (MEK1/2) AZD9291 (EGFR)

PC9 6.95 (�2.5) 0.008 (�0.002)
PC9 GR_1 EGFR T790M/KRAS gain (5.43-fold) 7.24 (�3.2) 1.12 (�0.5)
PC9 GR_2 NRAS E63K 0.62 (�0.3) 2.8 (�0.4)
PC9 GR_3 EGFR T790M 6.2 (�3.6) 0.18 (�0.2)
PC9 GR_4 EGFR T790M 6.2 (�3.6) 0.02 (�0.01)
PC9 GR_5 EGFR T790M 7.32 (�2.3) 0.14 (�0.06)
PC9 GR_6 EGFR T790M 8.77 (�1.5) 0.005 (�0.001)
PC9 GR_7 EGFR T790M 7.44 (�2.6) 0.002 (�0.002)
PC9 GR_8 EGFR T790M/KRAS gain (7.06-fold) 3.7 (�0.99) 2.40 (�0.97)
PC9 AR_1 KRAS gain (24.6-fold) 2.7 (�0.23) 2.41 (�0.5)
PC9 AR_4 EGFR T790M 1.63 (�1.1) 0.73 (�0.3)
PC9 AR_6 NRAS gain (4.23-fold) 0.89 (�0.6) 2.4 (�0.5)
PC9 WZR_1 NRAS Q61K 0.23 (�0.04) 1.99 (�0.03)
PC9 WZR_3 KRAS gain (2.64-fold) 0.22 (�0.1) 1.65 (�0.5)
PC9 AZDR_1 NRAS gain (2.5-fold)/MAPK1 gain/CRKL gain 0.25 (�0.06) 2.3 (�0.9)
PC9 AZDR_2 NRAS G12V 1.4 (�0.9) 3.69 (�1.2)
PC9 AZDR_3 MAPK1 gain/CRKL gain 2.38 (�0.9) 1.94 (�0.5)
PC9 AZDR_4 ND 0.19 (�0.1) 2.48 (�1.1)
PC9 AZDR_5 NRAS E63K 0.17 (�0.05) 2.14 (�0.06)
PC9 AZDR_6 NRAS E63K 0.11 (�0.03) 1.6 (�0.02)
PC9 AZDR_7 NRAS G12R 0.14 (�0.03) 2.63 (�0.3)
PC9 GR_1_AZDR_1 EGFR T790M/KRAS gain (6.23-fold) 3.6 (�0.7) 2.4 (�0.95)
PC9 GR_1_AZDR_2 KRAS gain (5.66-fold) 6.7 (�1.4) 2.7 (�1.2)
PC9 GR_1_AZDR_3 EGFR T790M/KRAS gain (4.44-fold) 3.4 (�0.5) 2.4 (�0.7)
PC9 GR_1_AZDR_4 EGFR T790M/KRAS gain (5.46-fold) 3.6 (�2.6) 2.6 (�0.9)
PC9 GR_6_AZDR_1 ND 0.28 (�0.2) 1.35 (�0.05)
PC9 GR_6_AZDR_2 NRAS gain (2.4-fold) 0.54 (�0.3) 2.24 (�0.6)
PC9 GR_6_AZDR_3 NRAS gain (3.68-fold) 0.13 (�0.06) 1.48 (�0.3)
PC9 GR_6_AZDR_4 ND 0.73 (�0.5) 1.74 (�0.8)
NCI-H1975 EGFR T790M 4.94 (�3) 0.016 (�0.01)
NCI-H1975 AZDR_1 EGFR T790M 0.024 (�0.003) 2.52 (�0.4)
NCI-H1975 AZDR_2 EGFR T790M 0.15 (�0.1) 2.21 (�0.2)
NCI-H1975 AZDR_3 EGFR T790M >10 3.04 (�0.4)
NCI-H1975 AZDR_4 EGFR T790M/NRAS Q61K 5.46 (�3.7) 2.67 (�0.7)

NOTE: Green represents cell lines that are at least 5-fold more sensitive to selumetinib than in the relevant parental cell line. Pink represents cell lines that are at least
5-fold less sensitive to AZD9291 than in the relevant parental cell line. Cells were treated with dose titrations of indicated inhibitors alone for parental cells and in the
presence of original EGFR inhibitor for resistant populations. IC50 values represent an average of at least two independent experiments; errors bars, SD. Additional
compound data are shown in Supplementary Table S3. DNA from resistant populations was analyzed for genemutation and/or gene copy-number across a panel of
cancer-associated genes. Data represent genetic alterations detectedwithin the resistant populations. Fold gain, relative to parental cells, is indicated in brackets for
NRAS and KRAS.
Abbreviation: ND, nondetected.
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(Table 1). This is the first identification of G12V NRAS in the
context of NSCLC. In addition to gene mutations, copy-number
gains ofMAPK1, CRKL,NRAS, and KRASwere detected across the
resistant populations (Table 1), with the gain of NRAS and KRAS

resulting in increased protein levels (Supplementary Fig. S4). Of
particular interest, KRAS gain was observed in the T790M
PC9_GR_1 population that was partially sensitive to AZD9291
(Table 1), suggesting that KRAS contributes to the heterogeneous
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Figure 1.
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mechanisms of resistance to gefitinib within this population.
Indeed four separate AZD9291-resistant populations of PC9
GR_1 cells were subsequently generated, and KRAS gain was
retained within each resistant population (Table 1). Interestingly,
although T790M was still present in populations, PC9
GR1_AZDR_1, 3 and 4 T790M was no longer detectable in PC9
GR1_AZDR_2 cells.

Modifications of RAS genes can drive resistance to EGFR
inhibition

As NRAS mutations were detected in seven of the resistant
populations, and frequently associated with selumetinib sen-
sitivity, its role in resistance was further investigated. Basal
levels of active NRASwere lower in parental PC9 cells compared
with resistant PC9 populations in which E63K, G12V (Fig. 2A),
E63K or Q61K (Supplementary Fig. S4) NRAS mutation had
been detected. Treatment of parental PC9 cells with 160 nmol/L
AZD9291 decreased levels of phosphorylated EGFR and active
NRAS. In contrast, in mutant NRAS cells, a decrease in phos-
phorylated EGFR was not associated with corresponding
decrease in active NRAS, suggesting that constitutive activation
of NRAS disconnected from EGFR in these cells (Fig. 2A and
Supplementary Fig. S5A). In transient exogenous expression in
PC9 cells, WT and mutant NRAS variants were activating (Sup-
plementary S5Bi–S5Bii), and prevented cell growth inhibition
by either AZD9291 or gefitinib compared with control trans-
fected cells (Fig. 2B). Increased resistance to growth inhibition
by AZD9291 was also observed in additional parental EGFRm
cell lines similarly trasfected with WT and activating mutant
NRAS variants (Supplementary Fig. S5C). Knockdown ofNRAS
in cell populations with three separate siRNAs, but not KRAS,
for 72 hours resulted in a significant decrease in phosphorylated
ERK in the resistant populations harboring NRAS mutations,
but to a lesser extent in the PC9 parental cells (Fig. 2C).
Moreover, knockdown of NRAS but not KRAS was associated
with inhibition of proliferation only in the NRAS-mutant
populations (Fig. 2D). These data indicate that activatingNRAS
mutations, including the novel E63K NRAS, are sufficient to
drive resistance to EGFR inhibition. Similarly, knockdown of
NRAS in the presence of AZD9291 caused a significant decrease
in cell growth of PC9 GR_6, AZDR_2 (NRAS gain 2.4-fold), and
PC9 GR_6 AZDR 3 (NRAS gain 3.68-fold) populations (data
not shown).

As KRAS gain was detected within eight resistant populations
(Table 1), we determined whether this could similarly drive
resistance. Knockdown of KRAS in PC9 parental cells had no
effect on cell growth or levels of phosphorylated ERK (Fig. 2C),
whereasKRAS knockdown in PC9AR_1 (KRAS gain 24.6-fold), in
the presence of afatinib, caused a significant decrease in both
phosphorylated ERK levels after 48 hours (Fig. 3A) and prolifer-

ation over 72 hours (Fig. 3B). Interestingly, knockdown of KRAS
in the PC9 GR_1 (T790M and KRAS gain 5.43-fold) population,
had no effect on cell proliferation alone or when treated in
combination with gefitinib (Fig. 3C). However, a significant
decrease in cell growth was observed when KRAS knockdown
was combined with AZD9291 treatment (Fig. 3C). Consistent
with this, knockdown of KRAS in the presence of AZD9291
resulted in complete inhibition of phosphorylated ERK, but not
in the presence of gefitinib (Fig. 3D). These observations suggest
that KRAS and T790M are both important for driving resistance in
the PC9 GR_1 population.

Interestingly, we noted that a 2.64-fold gain of KRAS, as
detected in WZR_3 cells, was associated with increased sensitivity
to selumetinib, but cell populations with KRAS gains of between
4.44- and 24.6-fold were insensitive to selumetinib (Table 1),
suggesting a threshold effect of KRAS expression. Indeed, partial
knockdown of KRAS for 48 hours in AR_1 cells (KRAS gain 24.6-
fold)with afatinib resensitized them to selumetinib inhibition, as
revealed by decreased phosphorylated ERK, FRA1, and p90RSK
levels compared with cells similarly treated with control siRNA
(Fig 3E). Moreover, partial knockdown of KRAS followed by
treatment with selumetinib resulted in significantly greater inhi-
bition of cell growth compared with cells treated with control
siRNA (Fig. 3G). In contrast, no significant increase in inhibition
of the MAPK pathway or cell growth was observed with partial
knockdown of KRAS followed by selumetinib treatment in
WZR_3 cells (KRAS gain 2.64-fold) cultured in the presence of
WZ4002 (Fig. 3F and3H). Interestingly, selumetinib inhibition of
MEK1/2 in AR_1 cells resulted in enhanced pMEK1/2 levels
compared with that observed in selumetinib-sensitive WZR_3
cells (Fig. 3E and F). Collectively, these data are consistent with
previous reports inwhichKRAS amplification in colon cells drives
high levels of pathway output and ERK-dependent negative
feedback, relief of which, upon MEK inhibition, drives relative
insensitivity to MEK inhibitors (29). Similarly, we observed that
enhanced exogenous expression of wild-type NRAS in PC9 AR_6
cells (NRAS 4.23-fold gain) reduced the effectiveness of selume-
tinib treatment on phosphorylated ERK and growth inhibition
comparedwithPC9AR_6 cells treatedwith controlDNA(data not
shown).

In vitro, a combination of AZD9291 with selumetinib delays or
prevents resistance emerging in EGFRm and EGFRm/T790M
cells

Because the data had indicated that RAS–MAPK activation was
a frequent mechanism of AZD9291 and other EGFR TKI resis-
tance, we tested whether treatment with a combination of
AZD9291 and selumetinib could delay or prevent the emergence
of resistance in these settings.

Figure 3.
Determining the functional role ofKRAS gain in acquired resistance to EGFR inhibitors. A, immunoblotting of PC9AR_1 (KRAS gain) cells grown in 1.5 mmol/L afatinib
transfected with 20 nmol/L of NRAS, KRAS, or control siRNA for 48 hours. B, PC9 AR_1 (KRAS gain) cells grown in 1.5 mmol/L afatinib treated for 96 hours
with 20 nmol/L of NRAS, KRAS, or control siRNA. Cell number was determined by nuclei count. C, PC9 GR_1 (EGFR T790M/KRAS gain) cells grown in 1.5 mmol/L
gefitinib were transfected with 20 nmol/L of KRAS or control siRNA � 160nmol/L AZD9291. After 4 days, cell number was determined by nuclei count. Data
shown are representative data; error bars, SD. D, immunoblotting of PC9 GR_1 cells, grown in media containing gefitinib, transfected with 20nmol/L of KRAS or NTC
siRNA for 5 days, and then treated with 160 nmol/L of AZD9291 for 2 hours. E and F, immunoblotting of PC9 AR_1 (KRAS gain) cells grown in 1.5 mmol/L afatinib (E)
and WZR_3 (KRAS gain) cells grown in 1.5 mmol/L WZ4002 transfected with 20 nmol/L of KRAS or control siRNA for 48 hours and then treated for 4 hours �
500 nmol/L selumetinib (F). G and H, PC9 AR_1 (KRAS gain) cells grown in 1.5 mmol/L afatinib (G) and WZR_3 (KRAS gain) cells grown in 1.5 mmol/L WZ4002
treated for 96 hours with 20 nmol/L of KRAS or control siRNA � 500 nmol/L selumetinib (H). Cell number was determined by nuclei count.
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PC9 (EGFRm) cells were treated with 160 nmol/L AZD9291 or
100nmol/L selumetinib alone or in combination. Selumetinib
alone did not inhibit proliferation of PC9 cells (Fig. 4A). Whereas
resistant PC9 cells began to emerge after 34 days treatment with
AZD9291, no resistant cells were observed over a similar timewith
a combination of AZD9291 and selumetinib (Fig. 4A). To inves-
tigate the combination in the EGFRm/T790M setting, NCI-H1975
cells were treated with 160 nmol/L AZD9291 or 100 nmol/L
selumetinib alone or in combination. Treatment with 100
nmol/L selumetinib alone did not inhibit proliferation of NCI-
H1975 cells (Fig. 4B). Treatment with AZD9291 initially slowed
the rate of proliferation; however, a small resistant population had
emerged following17days of treatment (Fig. 4B). Treatmentwitha

combination of AZD9291 and selumetinib significantly delayed
outgrowth of resistant cells compared with AZD9291 alone
(Fig. 4B). Similarly, a combination of AZD9291 with selum-
etinib prevented emergence of resistance in two other cell lines,
HCC827 (EGFR Ex19del) and NCI-H820 (EGFR Ex19del/
T790Mþ/METamp; Supplementary Fig. S6A and S6B).

To further explore the EGFRm/T790M setting, PC9 GR_1 cells
(T790M and KRAS gain) were treated with a combination of
AZD9291 and selumetinib. Following treatment an increase in
proapoptotic markers, cleaved PARP and BIM, and a decrease in
antiapoptotic BclxL was observed together with a more profound
effect on phosphorylated ERK levels than either agent alone
(Fig. 4C). Moreover, the combined effect of inhibition of ERK
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Figure 4.
In vitro, combination of AZD9291 with
selumetinib induces more profound
phenotype inhibition. A andB, PC9 (A)
and NCI-H1975 (B) cells were
chronically treated for 34 days with
DMSO, AZD9291, selumetinib, or a
combination of AZD9291 with
selumetinib. Fold increase in cell
number was monitored over time.
Lysates from PC9 GR_1 (C) or
NCI-H1975 (E) cells treated with
AZD9291 and selumetinib alone or
in combination for 48 hours were
analyzed by immunoblotting. PC9
GR_1 (D) or NCI-H1975 (F) cells were
treated over 12 days with AZD9291
and selumetinib alone or in
combination. Cells were fixed and
cell number determined from nuclei
count; error bars, SD.
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signaling and apoptotic pathway was associated with a greater
decrease in cell number over 12 days compared with either
inhibitor alone (Fig. 4D). Although combination of selumetinib
and AZD9291 did not increase apoptotic markers in NCI-H1975
(Fig. 4E), a profound antiproliferative effect was observed fol-
lowing 12 days treatment with the combination compared with
each agent alone (Fig. 4F). Overall these in vitro studies indicated
that combining AZD9291 with selumetinib lead to more pro-
found mechanistic and phenotypic inhibition of cells.

In vivo, a combination of AZD9291 with selumetinib caused
regression of AZD9291-resistant tumors in transgenic models

Finally, we tested the concept that MEK pathway inhibition
could circumvent resistance to AZD9291 using in vivo mouse

tumor models that develop lung adenocarcinomas driven by
EGFRL858RþT790M or EGFRL858R (30), and are highly sensitive
to inhibition by AZD9291 (10). Three animals with
EGFRL858RþT790M transgenic tumors were chronically treated with
5 mg/kg/d AZD9291 and showed initial tumor regression fol-
lowed by progressive disease after 3 months treatment (Fig. 5A).
Animals were subsequently treated with AZD9291 in combina-
tion with 5 mg/kg twice daily of selumetinib. Remarkably, resis-
tant tumors in 3 of 6 animals showed a profound response to the
combination, showing strong regression after 1 to 2 months of
combination treatment (Fig. 5A). Tumor regression was not
observed when tumor-bearing EGFRL858RþT790M mice were trea-
tedwith selumetinib alone for 1 to 2weeks (Fig. 5B). Similarly, an
animal bearing an EGFRL858R tumor showed progression after 3
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Figure 5.
In vivo, combination of AZD9291 and
selumetinib can overcome acquired
resistance to AZD9291 in mutant
EGFR trangenic models of lung
cancer. A, MR images of lungs from
tumor-bearing EGFRL858RþT790M

transgenic mice pretreatment, after
treatment with AZD9291 for 6 to 20
weeks (W) until progressive disease,
and subsequently with the
combination of AZD9291/selumetinib
for 4 to 8 weeks. B, MR images
of lung from tumor-bearing
EGFRL858RþT790M mice pre- and
posttreatment with selumetinib for
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tumor. C, MR images of lung from a
tumor-bearing EGFRL858R transgenic
mouse pretreatment, after treatment
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until disease progression, and
subsequently with the combination of
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months of AZD9291 treatment, which regressed following com-
bination of AZD9291 with selumetinib (Fig. 5C). These data
provide compelling in vivo evidence to support RAS–MAPK sig-
naling dependency as an important resistance mechanism to
AZD9291.

Basal levels of RAS–MAPK pathway components do not predict
MEK inhibitor sensitivity across resistant populations

We also explored whether the activity status of the RAS–MAPK
pathway could identify tumors that would benefit from combi-
nation of EGFR TKI with selumetinib. Unexpectedly, immuno-
blotting from parental and resistant populations revealed little
correlation between basal ERK phosphorylation levels and selu-
metinib sensitivity (Supplementary Fig. S4). Consistent with
these data, analysis of phosphorylated and total protein levels
using a Reverse Phase Protein Array, showed basal levels of
phosphorylated ERKwere not indicative of selumetinib sensitivity
(Supplementary Tables S1 and S5). In conjunction with this,
sensitivity toMEK inhibition was not consistently correlated with
levels of other phosphorylated or total proteins known to be
involved in RAS–MAPK signaling (Supplementary Table S5).

Discussion
Significant advances in our understanding of acquired resis-

tance toEGFR-targeteddrugs in EGFRmNSCLC, includingbut not
limited to identification of T790M, MET or HER2 amplification,
and PIK3CAmutants (6), are helping toward the development of
new rational treatment strategies to potentially prolong patient
benefit, such as AZD9291 and CO-1686, which target T790M.
However, a large proportionof EGFR inhibitor acquired resistance
remains unexplained, and it is anticipated that cells will also find
alternative mechanisms to circumvent inhibition by new agents
such as AZD9291 and CO-1686.

We have used a novel approach by directly comparing
resistance mechanisms across 32 populations with acquired
resistance to different EGFR TKIs, and provide the first preclin-
ical in-depth analysis of AZD9291 acquired resistance. We took
a population approach to try to better emulate the heteroge-
neity of resistance that occurs in advanced tumors due to
competing pressures on both selection of existing clones and
gain of new alterations.

A key finding is identification of certain NRAS mutations or
NRAS gain as the most frequently detected genetic modifica-
tions able to drive resistance to AZD9291. Although previous in
vitro data have similarly identified an NRAS Q61K mutation in
acquired resistance to gefitinib or erlotinib (24, 31), this is the
first report of an NRAS-activating mutation conferring acquired
resistance to other EGFR inhibitors such as AZD9291. Further-
more, this is the first report of the novel NRAS E63K mutation,
and together with NRAS G12V, the first report of these NRAS
mutations associated with EGFRm NSCLC. The high incidence
of NRAS modifications was somewhat surprising in light of
recent clinical data in which common NRAS mutations were
not detected in lung cancers with acquired resistance to gefi-
tinib or erlotinib (7, 24). However, genetic alterations in NRAS
have been associated with resistance to EGFR agents in other
disease settings such as colorectal cancer (32, 33), raising the
hypothesis that NRAS aberrations may become important in
lung cancer too. Copy-number changes were not analyzed in

the previous studies; therefore, the clinical relevance of NRAS
copy number gain in lung cancer remains unknown. Using
more extensive DNA analysis, a role for NRAS activation in
EGFR TKI–resistant EGFRm NSCLC may eventually emerge,
and furthermore may only become more apparent as newer
agents become established in clinical practice.

Despite the clinical prevalence of specific NRAS molecular
alterations being unclear, it was notable how activation of
RAS–MAPK signaling independent of EGFR activity was a com-
mon biologic theme, although the precise molecular nature
driving resistance remains unclear for a number of populations.
Others have reported alternative mechanisms of resistance to
EGFR TKIs associated with increased dependency on RAS–MAPK
signaling, including loss of NF1, CRKL amplification and EMT
(31, 34–36). In addition, amplification ofMAPK1was reported as
a resistancemechanism toWZ4002 (15) andhas beenobserved in
PC9AZD9291-resistant populations in this study. Taken together,
these studies suggest that activation of RAS–MAPK signaling
independent of EGFR could be a frequent resistance mechanism
for the TKIs currently in development, with multiple different
aberrations converging on RAS–MAPK signaling. This mirrors
other disease areas, where resistance mechanisms to EGFR target-
ing result in the RAS–MAPK pathway activation by various
mechanisms, for example, mutations in KRAS, NRAS, and BRAF
in colorectal cancer (32, 33) or overexpression of RAS family in
head and neck cancer (37) are associated with cetuximab resis-
tance. Moreover, data presented here and by others (15, 35)
support use of MEK inhibitors such as selumetinib in combina-
tion with new EGFR TKIs to overcome such acquired resistance
mechanisms or potentially in earlier treatment as part of preven-
tion strategies. Interestingly, our data support that this combina-
tion may provide benefit in both T790M and EGFRm TKI-na€�ve
settings.

In addition to increased sensitivity to selumetinib across a
number of the resistant populations, we also observed increased
sensitivity to the Aurora kinase B inhibitor AZD1152-HQPA, in
combinationwithAZD9291, in all of theAZD9291-resistantNCI-
H1975 populations compared with the parental cells (Supple-
mentary Table S3). This is consistent with recent reports (38) and
is worthy of further investigation.

Overall, the emerging preclinical evidence presented here sup-
ports a picture, whereby during chronic exposure to AZD9291,
competing selection pressures are likely to influence that clones
within aheterogeneous populationultimately becomedominant.
This could also involve T790M clones becoming less prevalent
within a tumor as other resistance clones becomemore dominant.
Moreover, our data and those of others provide a compelling
rationale for combining inhibitors of the RAS–MAPK signaling
such as selumetinib with AZD9291 across EGFRm settings in
NSCLC, to tackle RAS–MAPK as a potentially important escape
mechanismwithin such clones. A key challenge will be to develop
effective patient selection strategies to identify those patients who
may benefit from such a combination. Emerging data suggest
multiple genetic and nongenetic alterations, including certain
NRASmodifications reported here, could occur that converge on
activating the RAS–MAPK pathway, and therefore it is possible
that a broad biomarker platform will need to be established. It is
important that measuring basal phosphorylation levels of ERK is
unlikely to be sufficient to determine dependence on RAS–MAPK
signaling or sensitivity to MEK inhibitors (39), thus more sophis-
ticated predictive biomarker strategies will need to be developed.

Eberlein et al.

Cancer Res; 75(12) June 15, 2015 Cancer Research2498

on February 3, 2016. © 2015 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst April 13, 2015; DOI: 10.1158/0008-5472.CAN-14-3167 

http://cancerres.aacrjournals.org/


Future studies will determine how clinically prevalent these
preclinical mechanisms will be, but these preclinical observations
provide important insights to focus clinical translation efforts.
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